

Bromatologia I

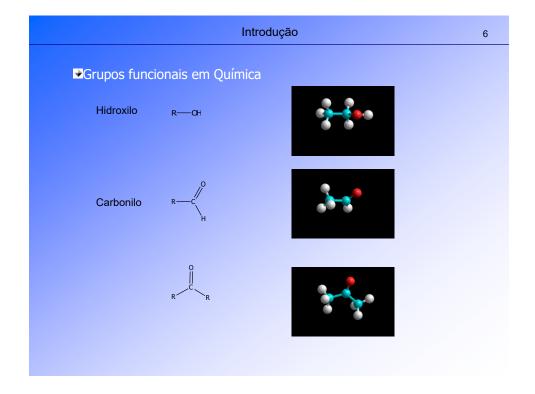
Paulo Figueiredo paulo@pfigueiredo.org

Programa

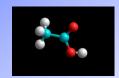
- 2
- Composição dos alimentos. Nutrientes e não nutrientes. Actividade química das proteínas, lípidos e carboidratos. Importância da água na química e bioquímica dos alimentos. Sais minerais, vitaminas e substâncias com propriedades antioxidantes. Classificação e utilização de aditivos alimentares.
- Características sensoriais dos alimentos: o gosto, o aroma, a cor, a textura. Noções de reologia alimentar.
- 3. Influência dos processos de elaboração, conservação e preparação culinária na composição dos alimentos.
- 4. Substâncias tóxicas naturais presentes nos alimentos: micotoxinas, toxinas marinhas, compostos originados durante o processamento e substâncias provenientes da contaminação ambiental.
- Análise e controlo de qualidade. Inspecção e programas de controlo.
 Amostragem. Técnicas aplicadas à análise de alimentos. Acreditação de laboratórios.

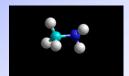
Bibliografia

- 1. P. Figueiredo, *Introdução à química dos alimentos: Métodos analíticos*, 2016, Novas Edições Acadêmicas
- 2. S. S. Nielsen, Food analysis, 2010, Springer
- 3. R. Owusu-Apenten, Introduction to food chemistry, 2005, CRC
- 4. H.-D. Belitz, W. Grosch, P. Schieberle, Food Chemistry, 2009, Springer
- 5. J. Adrian, J. Potus, A. Poiffait, P. Dauvillier, *Análisis nutricional de alimentos*, 2000, Acribia
- 6. O. R. Fennema, Food Chemistry, 1996, CRC
- 7. A. Gomes de Castro, *A química e a reologia no processamento dos alimentos*, 2003, Instituto Piaget


Web

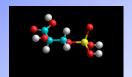
http://nutrition.jbpub.com/resources/chemreview.cfm


Avaliação


- A. Exame 100 %
- B. Avaliação contínua:
 - 1. 2 Frequências 2x30 %
 - 2. Discussão de artigos 25 %
 - 3. Resolução de exercícios 15 %

Dispensa de exame – média ponderada ≥ 9,5

■Grupos funcionais em Química



Introdução

8

Grupos funcionais em Química

Sulfidrilo

R-SH

Introdução

→Grupos funcionais em Química

- →Compostos aromáticos
 - → Ligações duplas conjugadas
 - **→**Cor
 - →Susceptibilidade a oxidações
 - → Reactividade fotoquímica

$$4n+2 e^{-} \pi$$

n = 0, 1, 2, ...

Introdução

10

9

Mecanismos de reacções químicas

- →Adição
- **y**Eliminação
- →Substituição
- → Rearranjos
- →Reacções de radicais livres
 - **→**Iniciação
 - →Propagação
 - **→**Terminação

Introdução

11

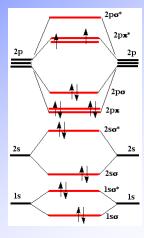
Cinética química

- →Alterações em função de:
 - →Concentração
 - **→**Temperatura
 - ₽Н

 - $\rightarrow x = 0$ ordem zero
 - \rightarrow x = 1 ordem 1
 - *

Introdução

- ■Tipos de ligação química
 - →Covalente
 - **→**Iónica
 - →Formas de ressonância

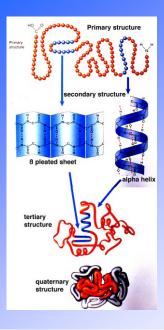

- →Orbitais atómicos podem combinar para formar orbitais moleculares
- Nº de orbitais moleculares formados é igual ao nº de orbitais atómicos combinados
- →Após combinação dos orbitais atómicos, forma-se um nº igual de orbitais ligantes e anti-ligantes
- Cada orbital molecular pode conter apenas 2 e⁻ de spin oposto
- Orbitais moleculares são preenchidos por um único electrão e só depois se dá o emparelhamento

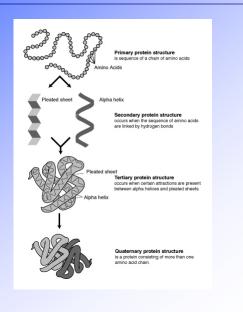
Introdução

14

■Teoria dos orbitais moleculares

 O_2

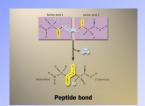

- →Proteínas
- **→**Lípidos
- **→**Carboidratos
- **→**Água
- →Vitaminas
- →Minerais
- →Anti-oxidantes naturais
- →Aditivos alimentares
- →Compostos tóxicos naturais


Composição dos alimentos

16

Proteínas

- →Estrutura:
 - →Primária sequência de a. a.; ligações covalentes
 - Secundária − pregueamento localizado (hélices-α e folhas-β)
 - Super-secundária − associação de estruturas secundárias
 - →Terciária enrolamento total
 - Quaternária − associação de subunidades proteicas num local específico



Composição dos alimentos

18

Compostas por a. a.→a. a. ligados por ligações peptídicas

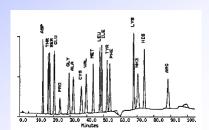
→apenas 20 a. a. naturais em proteínas

→a. a. modificados podem ser produzidos:

→sob condições fisiológicas

→no laboratório

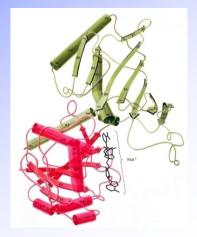
→durante o processamento de alimentos


▶10-11 a. a. não sintetizados no corpo humano

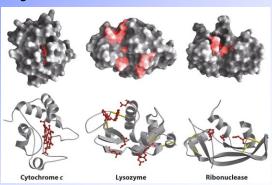
→a. a. essenciais

H	Proteínas	C	Composi	ção dos a	alimentos	;	20
		H H _b N° -C - C - C - C - C - C - C - C - C - C	H Light - C - C - C - C - C - C - C - C - C -	H B, N - C - C - C - C - C - C - C - C - C -	H H,N° -C. C. C. Threesing (the/7) H H,N° -C. C. H H H,N° -C. C. H H H H H H H H H H H H H	H	

- → determinação da composição em a. a. de uma proteína
 - →hidrólise com HCl 6 M a 110 °C durante 12-72 h
 - solução resultante separada e quantificada por um analizador de a. a.
 - →HPLC com coluna de permuta iónica ou RP-C₁₈
 - →a. a. reagem com composto fluorescente (o-ftalaldeído) e podem ser detectados por um detector de fluorescência
 - →processo destrói Trp
 - →para o detectar usa-se hidrólise básica


Composição dos alimentos

- →composição em a. a. afecta flavour
 - →a. a. com sabor doce Gly, Ala, Thr, Pro, Ser, Glu
 - ▼a. a. com sabor amargo Phy, Tyr, Arg, Leu, Val, Met, His
 - →a. a. com sabor ácido Glu, Asp


- →Estrutura secundária
 - ▶a. a. pequenos mais compatíveis com formação de hélices-\(\alpha \)
 - ightharpoonupgrandes cadeias laterais mais facilmente acomodadas numa estrutura de folha-eta
- →Estrutura super-secundária
 - ▶atracções entre hélices-α e/ou folhas-β levam à formação de estruturas super-secundárias
 ▶nível mais sofisticado de estrutura das proteínas fibrosas
 - ▼estruturas estabilizadas por interacções complementares entre elementos da estrutura secundária

Composição dos alimentos

- →Estrutura de domínio
 - →regiões geometricamente distintas numa proteína
 - →podem funcionar como:
 - →unidades evolucionárias
 - →unidades funcionais
 - →unidades de enrolamento

- →Estrutura terciária ou globular
 - ▼estrutura tridimensional adoptada por uma cadeia polipeptídica
 - → forma esférica
 - →núcleo hidrofóbico
 - → superfície carregada

Composição dos alimentos

- →Estrutura terciária

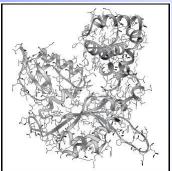
 - ▼superfície globular predominantemente polar possui zonas hidrofóbicas
 - →extensão da hidrofobicidade relacionada com características funcionais

- →Estrutura terciária
 - → fórmulas para calcular dimensões das proteínas globulares:

Volume (V)	1.3 M
Área (<i>A</i>)	5.72 M ^{2/3}
Razão área:volume (SV)	4.44 M ^{1/3}
Diâmetro (D)	1.35 M ^{1/3}

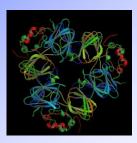
Proteínas Compos

Composição dos alimentos


- → Estabilização das estruturas proteicas
 - →Interacções electrostáticas
 - Vatracção entre cadeias laterais de a. a. ácidos (Asp, Glu) e básicos (Lys, Arg, His)
 - Ligações de H
 - só as internas contribuem para estabilizar as proteínas
 - →ligações superficiais são perturbadas pela água
 - →Interacções hidrofóbicas
 - →efeito de estabilização mais importante
 - importantes para a estrutura de proteínas desnaturadas (géis, espumas, emulsões)
 - →aumentam com a temperatura (até ~70 °C)
 - →solutos alteram a estrutura do solvente e logo as interacções hidrofóbicas

- → Desnaturação
 - →perca de estrutura secundária, terciária ou quaternária
 - →provocada por:
 - →temperaturas elevadas
 - ₽рН
 - → força iónica
 - →teor de água
 - → provocada por operações unitárias
 - →mistura
 - →concentração
 - →secagem

Proteínas Composição dos alimentos 30 →Proteínas fibrosas →forma alongada →insolúveis →componentes estruturais → tecido conjuntivo →pelos **→**unhas →tendões →músculos → fortes interacções proteína-proteína →exclusão de água da matriz proteica →fibrilas resultantes reforçadas por diversas ligações entre as cadeias


- →Proteínas globulares
 - →enrolamento compacto
 - →anfifílicas
 - →solúveis
 - **→**ligantes
 - →enzimas

Composição dos alimentos

- →Proteínas de armazenamento (ovos, sementes, leite)
 - →estrutura semi-estendida
 - →parcialmente insolúveis
 - → formam agregados de proteínas ou grânulos
 - →armazenamento numa forma semi-concentrada

→papel das proteínas na célula:

- →protecção externa em animais
 - →pele, cabelo, unhas, cascos
- →estrutura e movimento
 - →ossos, músculos, tendões
- →transporte de nutrientes
 - ▼sangue e componentes (hemoglobina, proteínas do plasma)
- →nutrição de jovens
 - →leite, ovos, sementes, nozes
- →catalisadores
 - →enzimas
- →proteínas de defesa
 - →anticorpos, inibidores enzimáticos, lectinas, toxinas

Proteínas

Composição dos alimentos

- →Classificação das proteínas com base na sua solubilidade:
 - ✓ extracção sequencial de alimentos com água, solução salina diluída e 70 % EtOH, seguida por uma base diluída permite obter 5 classes de proteínas:
 - →albumina solúveis em água
 - →globulina solúveis em sais diluídos
 - →prolamina solúveis em EtOH/H₂O
 - →glutelina solúveis em bases diluídas
 - →proteína residual bases, ureia, agentes redutores

→Enzimas

- → catalisadores biológicos aceleram reacções químicas nas células
- →fortemente específicas e eficazes
- →catalisam diversas alterações dos alimentos durante o armazenamento
- →usadas em processos de produção de alimentos
- →enzimas endógenas
 - →naturalmente presentes nos alimentos; afectam a qualidade
- →enzimas exógenas

Proteínas

Composição dos alimentos

36

→Cinética enzimática

- - velocidade de formação de produto por unidade de tempo
 - Constante que liga actividade à concentração depende das condições ambientais

→análises enzimáticas

 ✓diversos processos tecnológicos são avaliados através da quantidade residual de enzima presente num alimento
 ✓pasteurização, branqueamento, tratamento por pressões elevadas, temperatura interna do produto

Proteínas	Composição dos alimentos	38

→material para análises enzimáticas

Origem da enzima	Extracto do alimento Enzima purificada
Substrato	Em geral sintéticos; disponíveis para analisar 6 enzimas principais (oxidoredutases, transferases, hidrolases, liases, isomerases, ligases) Substratos que se degradam em presença da enzima, originando produtos que podem ser analisados por absorvância ou fluorescência
Solvente	Soluções tampão controladas em relação à composição, temperatura, pH e força iónica
Temperatura	Controlada com banho de água ou recipientes com circulação de água

→ cinética enzimática

- →velocidade inicial ν₀
 - ▼velocidade da reacção ao tempo t, quando 5 % ou menos do substrato é convertido em produto
- →equação de Michaelis-Menten

$$v = \frac{v_{max} [S]}{[S] + K_M}$$

[S] – concentração de substrato (mol/L)

V_{max} – velocidade máxima teórica para uma reacção enzimática (μmol/s)

K_m – constante de Michaelis-Menten (mol/L)

Proteínas

Composição dos alimentos

40

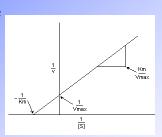
$$S + E \stackrel{k_{+l}}{\rightleftharpoons} ES \stackrel{k_{+2}}{\rightleftharpoons} P + E$$

→cinética enzimática

 k_2 – constante catalítica ou nº de renovação $k_{\rm CAT}$

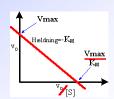
[Ē_T] – concentração total de enzima

 $V_{\text{max}} = k_{\text{CAT}}[E_{\text{T}}]$


 $K_{\rm m}$ – concentração de substrato necessária para que $V_{\rm 0}$ alcance 50 % de $V_{\rm max}$

→valor constante para cada enzima

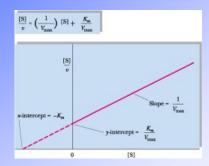
→ cinética enzimática


→equação de Lineweaver-Burke

$$\frac{1}{V_0} = \frac{Km}{Vmax[S]} + \frac{1}{Vmax}$$

→equação de Eadie

$$v_{\rm o} = (-K_{\rm m} \ v_{\rm o}/[{\rm S}]) + V_{\rm max}$$



Proteínas

Composição dos alimentos

42

→cinética enzimática→equação de Hanes

→ cinética enzimática

- →inibidor enzimático
 - →pequeno composto que deprime a actividade de uma enzima por interacção com uma região definida da enzima

Proteínas

Composição dos alimentos

44

→Inactivação enzimática

- →indicadores enzimáticos no processamento de carne
 →mais termoestáveis que muitos vírus da carne e bactérias patogénicas
 - →sistema APIZYM
 - - →adiciona-se uma potencial fonte de enzimas a cada ampola e verifica-se se há alteração de cor ao fim de 1-4 h
 - → glutamato oxaloacetato transaminase
 - →encontra-se na maioria das carnes
 - →actividade decresce com aquecimento a 73-75 °C
 - →lactato desidrogenase (indicador mais prometedor)
 - →actividade decresce com aquecimento a 63-66 °C

→Inactivação enzimática

- - →medição de variações na absorvância a 243 nm →oxidação do ác. linoleico a um dieno conjugado

→método do amido-iodeto

- - →oxidação do iodeto incolor, por hidroperóxido do ác. linoleico, a iodo
 - →iodo forma complexo azul-escuro com amido solúvel

Proteínas

Composição dos alimentos

46

✓ Isolamento e purificação de enzimas

- →necessidade de isolar enzimas dos alimentos em diversos graus de pureza, antes de poder caracterizá-las
- ▶ enzimas das plantas extraídas a partir de tecidos vegetativos (frutos, folhas, tubérculos) ou sementes
- ✓ enzimas animais extraídas de tecidos seleccionados, pois cada tecido ou orgão possui diferentes características
 ✓ no caso de extrair de músculos, é desejável algum envelhecimento prévio

→Isolamento e purificação de enzimas

- →desintegração dos tecidos e extracção das enzimas
 - →misturador.
 - →ultra sons
 - →evitar excessivo aquecimento
 - →digestão com lisozima
 - →tratamento com solvente orgânico (tolueno)
 - →habitualmente adiciona-se um tampão antes da desintegração e extracção
 - →acastanhamento enzimático em tecidos vegetais evitado por adição de antioxidantes antes da desintegração

Proteínas

Composição dos alimentos

48

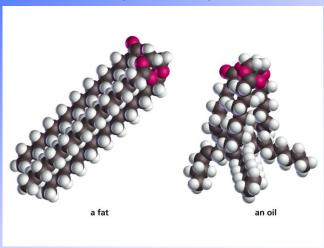
✓ Isolamento e purificação de enzimas

- →clarificação do extracto bruto
 - →filtração para eliminar suspensões
 - →papel
 - →fibra de vidro
 - →agentes precipitantes
 - →centrifugação
 - →antes da filtração adiciona-se um
 - tensioactivo para ajudar a solubilizar as enzimas ligadas à parede celular

→Isolamento e purificação de enzimas

- →concentração e recuperação de enzimas
 - →evaporação sob vácuo (35-50 °C)
 - →ultrafiltração (5 °C)
 - →concentrado pode necessitar de posterior filtração

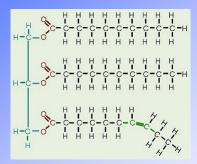
Composição dos alimentos

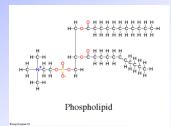

50

■Lípidos

- →qualquer material de origem biológica solúvel em solventes orgânicos
- →4 classes principais:

Ceras	Ésteres de álcoois de cadeia longa e ács. gordos Revestimento em plantas
Esteróis	Ex: colesterol Necessário ao bom funcionamento das membranas celulares
Fosfolípidos	Forma membranas celulares Emulsificantes
Triacilgliceróis (TAG)	Óleos e gorduras alimentares
Vitaminas	A, E, D, K por vezes consideradas como lípidos

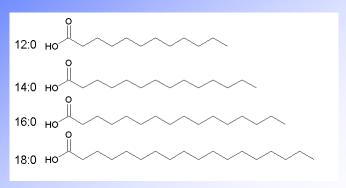

- →TAGs de origem animal são normalmente gorduras sólidas
- →TAGs de origem vegetal são geralmente óleos
 - → devido ao menor grau de saturação



Lípidos

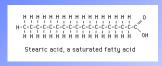
Composição dos alimentos

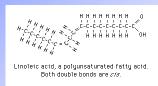
- → Triacilgliceróis contêm 1 glicerol e 3 ács. gordos
- →nos fosfolípidos, um grupo OH do glicerol está ligado a um grupo fosfato, o qual por sua vez está ligado a outro grupo

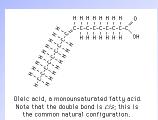

54

→3 ács. carboxílicos constituintes dos TAGs têm a fórmula geral CH₂(CH₂)_nCOOH

▶n' varia de 10 a 20

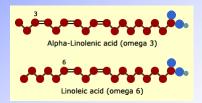

→nº total de átomos de C varia de 12 a 22


→quanto maior a cadeia, menor a solubilidade em água



Lípidos Composição dos alimentos

- →ács. gordos saturados não possuem qualquer ligação dupla
- →ács. gordos mono-insaturados contêm 1 única ligação dupla
- →ács. gordos poli-insaturados possuem 2 ou mais ligações duplas



→sistema omega de classificação

- →nº ω localização da 1ª ligação dupla a contar do CH₃ terminal
 - →maioria dos lípidos poli-insaturados contém ács. gordos ω-3 ou ω-6
 - →acção na prevenção de doenças cardiovasculares
 - →conversão em prostaglandinas e leucotrienos
 - →anti-inflamatórios e anti-hipertensivos

Lípidos	Composição dos alimentos	56

Ác. gordo	Nome comum	Nome IUPAC
C4:0	ác. butírico	ác. butanóico
C6:0	ác. caprónico	ác. hexanóico
C8:0	ác. caprílico	ác. octanóico
C10:0	ác. cáprico	ác. decanóico
C12:0	ác. láurico	ác. dodecanóico
C14:0	ác. mirístico	ác. tetradecanóico
C16:0	ác. palmítico	ác. hexadecanóico
C18:0	ác. esteárico	ác. octadecanóico
C20:0	ác. araquídico	ác. eicosanóico
C22:0	ác. behénico	ác. docosenóico
C24:0	ác. lignocérico	ác. tetracosanóico

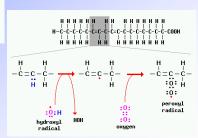
Ác. gordo	Nome comum	Nome IUPAC
C14:1 (<i>cis</i> Δ9)	ác. miristoleico	ác. <i>cis</i> -9-tetradocenóico
C16:1 (<i>cis</i> Δ9)	ác. palmitoleico	ác. <i>cis</i> -9-hexadecenóico
C18:1 (<i>cis</i> Δ9)	ác. oleico	ác. cis-9-octadecenóico
C18:1 (<i>trans</i> ∆9)	ác. elaídico	ác. trans-9-octadecenóico
C18:1 (<i>cis</i> Δ11)	ác. vaccénico	ác. <i>cis</i> -11-octadecenóico
C20:1 (<i>cis</i> Δ9)	ác. gadoleico	ác. <i>cis</i> -9-eicosenóico
C22:1 (cis 13)	ác. erúcico	ác. <i>cis</i> -13-docosenóico
C22:1 (cis 11)	ác. cetoleico	ác. <i>cis</i> -11-docosenóico
C24:1 (<i>cis</i> 15)	ác. nervónico	ác. <i>cis</i> -15-tetracosenóico

-ípidos	Composição dos alimentos

Ác. gordo	Nome comum	Nome IUPAC			
	Poli-insaturados				
C18:2 n-6	ác. linoleico	ác. cis-9,12-octadecadienóico			
C18:3 n-3	ác. linolénico	ác. <i>cis</i> -9,12,15-octadecatrienóico			
C18:3 n-6	ác. γ-linolénico	ác. 6,9,12-octadecatrienóico			
C18:4 n-3	ác. estearidónico	ác. cis-6,9,12,15-octadecatetraenóico			
C20:4 n-6	ác. araquidónico	ác. <i>cis</i> -5,8,11,14-eicosatetraenóico			
C20:5 n-3	ác. timnodónico	ác. cis-5,8,11,14,17-eicosapentaenóico			
C22:5 n-6	DPA	ác. cis-4,7,10,13,16-docosapentaenóico			
C22:6 n-3	DHA	ác. <i>cis</i> -4,7,10,13,16,19-docosahexaenóico			

- Medida do grau de insaturação
 - ▼valor de iodo é directamente proporcional ao grau de insaturação

 - →adiciona-se KI, reduzindo o cloreto de iodo em excesso a iodo livre
 - ▼iodo que não reage é titulado com tiossulfato de sódio, usando amido como indicador


Lípidos

Composição dos alimentos

- →ács. gordos podem ser cis ou trans
 - → cis mais comuns na natureza
 - →hidrogenação de óleos alimentares provoca rearranjo de cis em trans
 - - →ács. gordos trans na manteiga
- *ighthalphacis* ciss podem ser designados *Z*(zusammen)
- ★trans podem ser designados E (entgegen)

- →oxidação
 - →ocorre quando espécies reactivas de oxigénio (ROS) reagem com ács. gordos insaturados
 - **→**ranço
 - →reacção radicalar em cadeia

R	eactive oxygen species	(• unpaired e	electrons)	
ö::ö	• ö : : ö	·ö::ö·	• ö :H	: 0:н
Oxygen	Superoxide anion	Peroxide	Hydroxyl radical	Hydroxyl ion
o ₂	o <u>*</u> -	02-2	•он	OH-

Lípidos

Composição dos alimentos

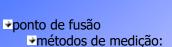

62

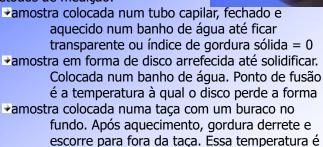
→oxidação

- ✓ formação de compostos intermediários (hidroperóxidos)
 ✓ degradam-se formando aldeídos e cetonas voláteis
 ✓ sabores e aromas desagradáveis fortes

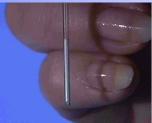
→Avaliação da oxidação de uma gordura
 →teste do ác. tiobarbitúrico (TBA)
 →TBA reage com o malonil aldeído resultante de ács.
 gordos com 3 ou mais insaturações

Lípidos Composição dos alimentos 64


→Avaliação da oxidação de uma gordura
 →medição do índice de peróxido (PV)
 →miliequivalentes de iodo libertado quando hidroperóxidos reagem com HI
 →concentração de I₂ livre determinada por titulação com tiossulfato, usando amido como indicador


- ▶Influência das gorduras na textura dos alimentos depende de 3 características físicas
 - →ponto de fusão
 - →polimorfismo
 - Òndice de gordura sólida

Lípidos


Composição dos alimentos

66

o ponto de fusão. Processo automatizado

- →ponto de fusão
 - →aumenta com o tamanho da cadeia e com o grau de saturação do ác. gordo
 - →ács. gordos trans têm maior ponto de fusão que os cis

Lípidos

Composição dos alimentos

68

→polimorfismo

- ▼formação de estruturas cristalinas de TAGs que diferem no arranjo das moléculas
 - →observáveis por difracção de raios X
 - Forma α obtida quando um óleo sofre um arrefecimento rápido
 - ✓ segmentos da cadeia de ác. gordo retêm um elevado grau de mobilidade e organizam-se em forma hexagonal ou de modo desordenado ✓ estado α tem tempo de vida de 60 s. antes de
 - •estado α tem tempo de vida de 60 s, antes de ser convertido na forma β

→polimorfismo

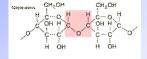
- **y**forma β' possui tempo de vida entre 60 s e anos
- estruturas e são metaestáveis, pois ambas podem transformar-se em cristal
- ▶TAGs existem como cristais α durante o processamento, passando a β durante o armazenamento
- se um TAG contiver 2 ou mais ács. gordos diferentes, a cristalização é mais complexa
- Cristalização é afectada pela presença de diferentes ács. gordos no TAG e pelo número de diferentes TAG nos diversos óleos alimentares

D ...

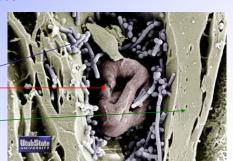
Lípidos

Composição dos alimentos

- →Funcionalidade das gorduras
 - → textura de TAGs depende de atributos físicos
 - → facilmente quantificados
 - atributos subjectivos de qualidade medidos por análise sensorial
 - →painel de provadores
 - →o poder lubrificante de uma gordura, ou capacidade de reduzir a fricção está ligado à percepção de cremosidade e suavidade
 - → grão e dureza dependem do tamanho dos cristais e do índice de gordura sólida
 - →a consistência das gorduras está ligada ao equilíbrio entre carácter sólido e líquido

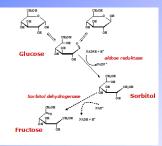

→Funcionalidade das gorduras

- →plasticidade
 - →uma gordura plástica flui quando lhe é aplicada uma força e recupera a sua consistência original (não a forma) quando a força é removida
 - →uma gordura plástica derrete ao longo de uma gama larga de temperaturas
 - provocada pela presença de uma mistura de cristais com diferentes estabilidades
 - ■gorduras não plásticas apresentam uma transição entre sólido e líquido mais definida


Lípidos Composição dos alimentos 72

- →Funcionalidade das gorduras
 - → plasticidade
 - → gorduras plásticas
 - → margarina
 - →óleo de coco
 - →óleo de palma
 - →gorduras não plásticas
 - →manteiga de cacau

- →Substitutos e imitadores de gorduras
 - →substitutos são substâncias similares a lípidos destinados a substituir as gorduras
 - →amidos modificados
 - **→**fibra
 - **→**gomas
 - →emulsificantes
 - →proteínas reestruturadas
 - →celulose


Mozzarella com substituto de gordura, bactérias e matriz proteica

Lípidos

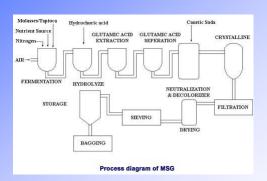
Composição dos alimentos

- ✓Olestra® é um emulsificante produzido por reacção da sacarose com 6-8 moles de ács. gordos C12-C22 na presença de um catalisador

- → triacigliceróis de cadeia média são produzidos por hidrólise de óleos vegetais
 - →ács. gordos saturados com cadeias médias e curtas são isolados
 - →cadeias médias religadas ao glicerol com ajuda de um catalisador
- → triacilgliceróis de cadeia média possuem pontos de fusão mais baixos, maior solubilidade em água e são resistentes a oxidação
- → triacilgliceróis de cadeia média não passam aos tecidos adiposos, sendo directamente metabolizados no fígado

Lípidos

Composição dos alimentos


- →Substitutos e imitadores de gorduras
 - →imitadores são proteínas ou carboidratos que imitam as propriedades físicas, de textura, sensação na boca e organolépticas das gorduras verdadeiras →celuloses microcristalinas têm propriedades de textura semelhantes às gorduras mas não as de flavour
 - →retêm humidade e actuam como texturizadores e

78

- →amidos e amidos modificados de batatas, milho, aveia, arroz, trigo ou tapioca
 - →dão corpo e modificam a textura
 - →para usar com emulsificantes, proteínas, gomas e outros amidos alimentares modificados

Lípidos Composição dos alimentos

- → proteínas microcristalinas produzidas a partir das proteínas do soro ou do leite e ovo
 - →aquecimento e corte simultâneos, de modo a produzir pequenas partículas de proteína coaquiada
 - → sensação na boca semelhante à da gordura

```
■Açúcares
```

```
ightharpoonup carboidrato − qualquer composto com fórmula (CH_2O)_n com n \ge 3
```

→n = 3 – triose

→n = 4 – tetrose

→n = 5 – pentose

→n = 6 – hexose

Açúcares

Composição dos alimentos

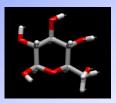
80

→açúcares simples

→açúcares necessários à vida

→ monossacáridos

→glucose (dextrose), frutose (levulose), manose, galactose

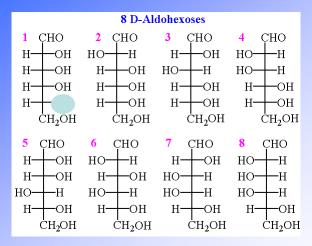

→glucose é o açúcar mais abundante na natureza →constituinte principal da celulose e amido

→dissacáridos

→sacarose, lactose, maltose

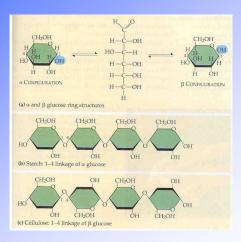
→ Monossacáridos

- →açúcares que não podem ser hidrolisados a açúcares mais simples
 - →glucose, frutose
- →constituintes básicos de todos os outros carboidratos


Açúcares

Composição dos alimentos

82


→estruturas

- →aldoses açúcares com uma função aldeído
 - →glucose é um polihidroxialdeído
- →cetoses açúcares com um grupo cetona em C2
 - →frutose é uma cetose
- →C1 carbono anomérico
- disposição do grupo OH em C5 determina a configuração absoluta
 - →açúcares D têm C5-OH a apontar para a direita
 - →maioria dos açúcares naturais
 - →nos açúcares L aponta para a esquerda

Açúcares Composição dos alimentos 84 **→**estruturas ▼reacção intra-molecular entre o aldeído em C1 e o C5-OH produz um anel piranose →formação de um hemiacetal origina um novo grupo OH em C1 →abaixo do plano – α-D-glucose →acima do plano – β-D-glucose →reacção entre C1 e C4-OH produz um anel furanose alpha pyranose beta pyranose ÇН₂ОН Fischer open-chain ÇH₂OH α -D-glucopiranose β -D-glucopiranose alpha furanose beta furanose

→estruturas

Açúcares

Composição dos alimentos

86

→reactividade dos monossacáridos

- →álcoois esterificam com ácidos
 - →pentassulfato por reacção com H₂SO₄
 - →pentafosfato com H₃PO₄
 - →pentaacetato com anidrido acético chs chs
 - →também se aplica a amido e celulose
- → grupos OH metilados com etóxido de etileno, produzindo um éter (R-O-Me)
- ▼iodeto de metilo em condições alcalinas também conduz a metilação
 - ▼metilação permite determinar o tamanho do anel e o tipo de ligação entre monossacáridos

→reactividade dos monossacáridos

- ▶ aldeído facilmente oxidado, formando ácidos carboxílicos
 ▶ aldeídos sofrem adição com aminas, formando uma base
- aldeídos sofrem adição com aminas, formando uma base de Schiff
 - →1º passo da reacção de Maillard

Açúcares

Composição dos alimentos

88

→reactividade dos monossacáridos

- →adição com fenil hidrazina, produzindo osazonas
 - → cristais amarelos a frio
 - ▼osazonas formadas por diferentes açúcares têm pontos de fusão diferentes
 - →usados para identificar o açúcar de partida

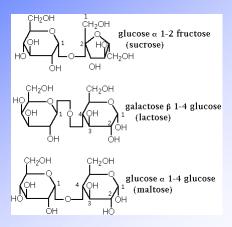
→ reactividade dos monossacáridos

→aldeídos formam álcoois por redução com borohidreto de sódio

Açúcares

Composição dos alimentos

90


→Polióis ou álcoois de açúcar

- → produtos da hidrogenação do grupo aldeído de açúcares simples
 - →alguns ocorrem na natureza, outros são sintéticos
 - →menor teor energético que açúcares comuns
 - →usados por diabéticos
 - não degradados por microrganismos na boca
 - →não provocam cáries

→ Dissacáridos

- ▼formados quando um grupo OH de um monossacárido reage com o carbono anomérico de outro
- ▶ligação glicosídica hidrolizada por ácidos (inversão), dando os monossacáridos constituintes

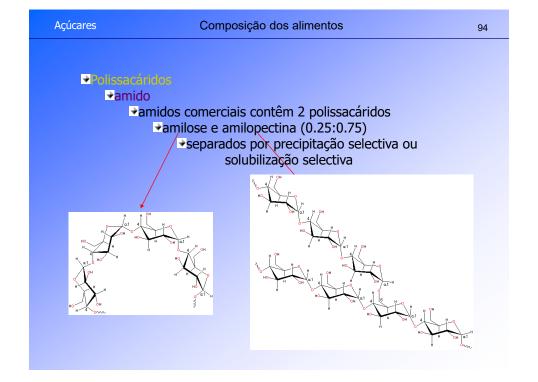
Açúcares

Composição dos alimentos

92

→reactividade dos dissacáridos

- →hidrólise pode ser feita por invertase
- →sacarose não tem carbono anomérico
 - →açúcar não redutor
 - → glucose e frutose são açúcares redutores
 - →reduzem Cu²+ a Cu+ (precipita como hidróxido de cobre – Cu(OH)₂), sob condições de temperatura e pH elevados
 - → teste de Fehling para açúcares redutores

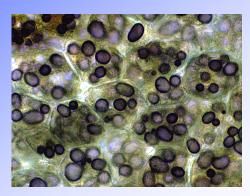

açúcares com reagente de Fehling

após aquecimento

→reactividade dos dissacáridos

 →cristais aquecidos derretem e depois sofrem desidratação e polimerização
 →caramelização

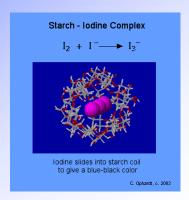
precipitação selectiva
 amido dissolvido com solvente orgânico
 dimetilsulfóxido, ...
 adição de BuOH ou I₂
 complexo insolúvel
 pp amilose


→solubilização selectiva
 →amido aquecido
 →amilose dissolve
 ⇒mistura de amilose dissolvida e amilopectina insolúvel separada por filtração

Açúcares

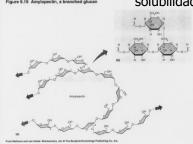
Composição dos alimentos

96


→amido é o polissacárido mais abundante após a celulose
 →reserva de energia para plantas superiores
 →ocorre como grânulos visíveis ao microscópio óptico
 →proveniente de cereais, legumes e tubérculos
 →diferentes propriedades segundo origem
 →podem ser distinguidos por raios X

→amilose

- →polímero de unidades α-D-glucose ligadas por ligações 1,4
- →adopta estrutura de dupla hélice quando seca
- →adopta forma aleatória em solução
- ■adição de iodo origina um complexo de inclusão (γ-amilose)


Açúcares

Composição dos alimentos

- →mudança de cor do iodo (450 para 620 nm) devida à mudança de polaridade da água para o interior não polar da hélice
- →amilose forma complexos de inclusão com outros solutos não polares
 - →BuOH, ács. gordos, ...
- hidrólise enzimática da amilose origina produtos de cadeia mais curta
 - →menor capacidade de ligação ao iodo
 - →medida da actividade da amilase

→amilopectina

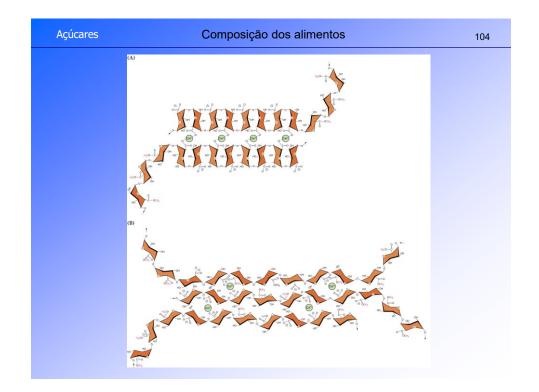
- ightharpoonuppolímero linear de unidades α-D-glucose ligadas por ligações 1,4, com ramificações α(1→6) a cada 15-20 unidades de glucose
 - ▼ramificação impede formação de hélice e ligação de iodo
 - percentagem de amilose calculada a partir da quantidade de iodo complexada (Ymg)
 →% amilose = (Yx100/20)
 - ▼elevado grau de ramificação aumenta solubilidade do amido

Açúcares

Composição dos alimentos

- grãos de amido são insolúveis em água
- cada tipo de amido sofre mudanças físicas típicas quando aquecido
 - →temperatura de gelatinização aumento brusco de absorção de água, causando um aumento de 100 % no volume dos grânulos
 - →amilose libertada dos grânulos
 - →aumento na viscosidade da solução
 - Calorimetria de varrimento diferencial e viscosimetria − métodos de verificação da temperatura de gelatinização

→ pectina


- ✓ exo-polissacárido encontrado em plantas terrestres
 ✓ serve de cimento intercelular, ajudando a manter
 - juntas as células
 - →extraída a partir de citrinos por extracção alcalina, seguida por precipitação com cálcio ou EtOH

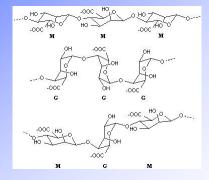
Açúcares

Composição dos alimentos

- **y**estrutura baseada em 2 tipos de monossacáridos
 - → sequências repetidas do éster metílico do ácido poli-galacturónico
 - → sequências de ramnose ocorrem juntamente com pequenas quantidades de sequências mistas

- →características conformacionais
 - →resíduos de ácido α-D-galacturónico ligados por ligações α-1,4
 - →unidades empilhadas uma sobre a outra
 - →formação de bolsas com capacidade de ligação
 - →unidades ramnosil ligadas por ligações β-1,4
 - →estrutura semelhante à da celulose

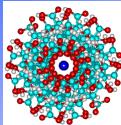
- →quando aquecida em solução, hélice perde estrutura terciária
- se a temperatura for reduzida, pectina forma um gel métodos para avaliar força do gel:
 - →método SAG
 - →analisador Voland Stevens
 - → determinação da temperatura de gelação

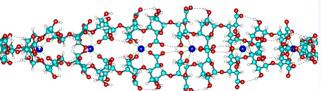

Açúcares

Composição dos alimentos

106

→alginato


- →polissacárido isolado de algas castanhas
 →homopolímero de ácido β-D-manurónico, ácido
 - α -L-gulurónico e sequências mistas de ambos



→estrutura do alginato

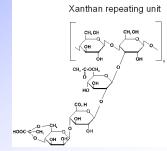
 →sequências de ácido β-D-manurónico adoptam estrutura secundária de hélice estendida
 →sequências de ácido gulurónico ligadas por

ligações α -1,4 semelhantes às da pectina

Açúcares Composição dos alimentos

- →alginato adopta estrutura não organizada em solução
 →viscosidade aumenta em função da concentração e peso molecular
 - →adição de iões (Mg²+, Ca²+, Sr²+, Ba²+) induz formação de gel
- →alginato forma películas, usadas na cobertura de peixe
- alginato usado na produção de legumes, carne ou peixe reestruturados

- →xantano e outros exo-polissacáridos de origem microbiana
 - →xantano (E415) foi o 1º polissacárido microbiano aprovado para uso alimentar
 →produzido por culturas imersas de Xanthomonas campestris



Açúcares Composição dos alimentos 110

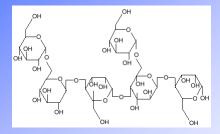
xantano consiste numa cadeia central de β-1,4-D-glucose, a qual sustenta uma cadeia de trissacárido (3,1-α-D-manopiranose-2,1-β-D-ácido glucorónico-4,1-β-D-manopiranose)
 cadeia central rígida, mas cadeias laterais

conferem aumento de solubilidade relativamente à celulose

xantano não forma gel, excepto na presença de galactomananos

- →xantano possui elevada estabilidade relativamente a pH, aquecimento e enzimas
- →usado como espessante e estabilizador
- →pouco digerível
 - →utilização em alimentos pouco energéticos
 - → funciona como fibra alimentar

Açúcares Composição dos alimentos


- →goma gelana (E418) é um polissacárido linear produzido por fermentação com *Sphingomonas elodea*
 - →cadeia linear de glucose, ácido glucorónico, glucose e ramnose
 - →agente gelante
 - →em concentrações muito baixas produz géis fluidos
 - →usados para barrar

- →goma Wellan polissacárido produzido por *Alcaligenes sp.*
 - ✓ estrutura glucose, ácido glucorónico, glucose, ramnose, com uma ramificação ramnose no 3º resíduo
 - →não forma géis
- → goma ramsan é outro polissacárido ramificado que não forma géis
 - →também produzido por Alcaligenes sp.

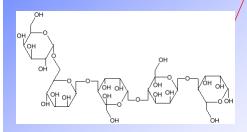
Açúcares

Composição dos alimentos

- →galactomananos gomas das sementes
 →polissacáridos de armazenamento mais abundantes
 após o amido
 - →extraídos de sementes de leguminosas →guar, tara, goma de alfarroba

Guar - Cyamopsis tetragonolobus

estrutura baseada numa cadeia de manose com ligações β -1,4, com cadeias laterais de galactose


→solubilidade aumenta com nº de resíduos galactose

→razão manose:galactose

2:1 - guar

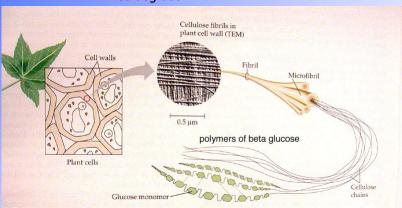
3:1 - tara

4:1 – alfarroba

Açúcares

Composição dos alimentos

116


→glicogénio

- →equivalente animal do amido
- →mais ramificado que amilopectina
 - →degradação nos músculos influi na qualidade da carne

→Fibra alimentar

- →celulose, xilanose e componentes da parede celular vegetal, não digeríveis
 - →ruminantes possuem enzimas digestivas capazes de os degradar

Composição dos alimentos

118

₽Água

- ₹70 % ou mais em peso dos alimentos
- → propriedades diferentes das dos outros líquidos, devido às grandes forças atractivas existentes entre as moléculas
 - ⇒ ligações de hidrogénio

✓estado líquido - 1 molécula de H₂O liga-se a outras 3.4 moléculas de H₂O
 ✓estado sólido - 1 molécula liga-se a 4
 ✓líquido polar

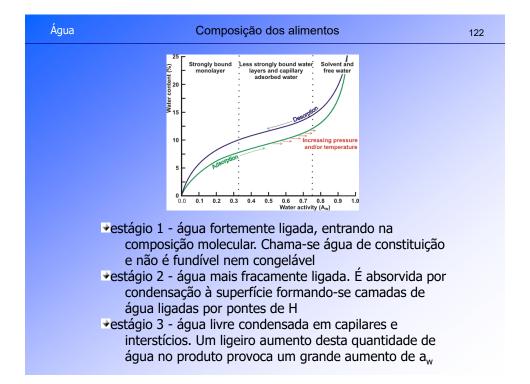
Água	Composição dos alimentos	120

- →a, água disponível
 - ▶razão entre a pressão de vapor da solução (substâncias dissolvidas) e a pressão de vapor do solvente (água)
 - →proporcional à fracção molar do soluto
 - →depende do soluto que nela está dissolvido, i. e. da composição do alimento (carboidratos, sais minerais, ...)

 Alimentos

$$a_w = P/P_0 = x_0$$

 $(P_0-P)/P = x_1/(x_1+x_2)$
 $x_1=n^0$ de moles do soluto


→isotermas de sorção

- →relacionam humidade ambiente com a_w do alimento a uma dada temperatura
- → taxas deveriam ser idênticas (alimentos em equilíbrio), mas normalmente uma é superior à outra →modificações da estrutura dos alimentos

 - →interacções com solutos

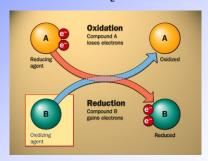
- →adsorção quando o teor de humidade do alimento é inferior à humidade relativa da atmosfera circundante →o alimento pode absorver água
- →desorção no caso contrário

- →isotermas de sorção possibilitam:
 - →previsão e controlo da actividade microbiana
 - →previsão da velocidade dos fenómenos bioquímicos
 - ▶ previsão da variação de peso durante o armazenamento
 - controlo do processo de secagem e do processo de armazenamento
 - → estimativa da duração prática do armazenamento
 - →estabelecimento do tipo de embalagem

Composição dos alimentos

124

✓ Vitaminas


- Compostos orgânicos não sintetizados no corpo humano (excepto D) necessários à manutenção da saúde
- →lipossolúveis (A, D, E, K)
- →hidrossolúveis

vit. A

vit. B₁₂

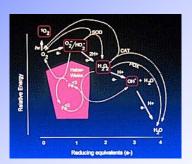
→ Anti-oxidantes naturais

- Compostos presentes nos alimentos, capazes de impedir oxidações provocadas por O₂ e metais
- →Oxidação adição de oxigénio ou remoção de hidrogénio de uma molécula
 - → diversas reacções de oxidação não envolvem directamente O₂

Anti-oxidantes

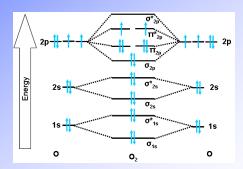
Composição dos alimentos

- →oxidação afecta alimentos
 - →micro constituintes
 - →macro constituintes
 - →carboidratos, lípidos, proteínas
 - →factores de qualidade
 - →propriedades organolépticas e nutricionais
 - →tempo de prateleira e segurança

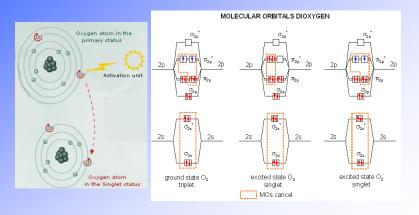

- →oxidação destrói ligações duplas conjugadas
 - →perca de cor
 - →perca de vitaminas
- →reacções entre ács. gordos polinsaturados e O₂ forma hidroperóxidos (ROOH)
 - → degradados a compostos de baixo peso molecular
 - →cetonas, aldeídos, álcoois
 - →provocam sabores e aromas desagradáveis

Composição dos alimentos

128

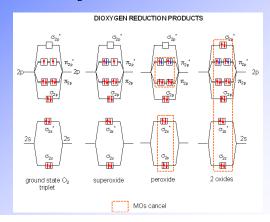

Características da oxidação de alimentos
 Maioria dos processos de oxidação envolvem reacções de transferência de 1 e¹
 desidrogenação de RH
 RH → R_(ox) + 1e¹ + H¹
 remoção de um e¹ de RH por um radical livre RH + OH¹ → R¹ + H-O-H
 oxidação também pode ocorrer por adição de O₂ a RH, formando ROOH

- →espécies reactivas de oxigénio (ROS)
 - →oxigénio molecular sofre um processo de redução de 4 electrões para formar água
 - → forma espécies de oxigénio activado
 - →superóxido, peróxido e radical hidroxilo



Composição dos alimentos

- →O₂ atmosférico não é reactivo porque está no estado estacionário
 - →n^o total de spin = 2*S*+1
 - electrões com spins paralelos − 2(0.5+0.5)+1=3
 - →tripleto
 - →electrões com spins opostos 2(-0.5+0.5)+1=1→singuleto



- →no O₂ atmosférico existem 2 e- desemparelhados na orbital π *2p (anti-ligante)
 - → tripleto pouco reactivo
 - → singuleto muito reactivo

Composição dos alimentos

- → radical superóxido ('O₂) é um produto intermédio da respiração aeróbia, mas também se forma por reacção do O₂ com metais de transição →radical peroxilo forma-se quando um radical hidrocarboneto reage com O₂
 - $ightharpoonup R + O_2 \rightarrow OOR$

H:O—O:H hydrogen peroxide

↓ Metal ion

HO hydroxyl radical
and

HO: hydroxide ion

Anti-oxidantes

Composição dos alimentos

- → catalisadores da oxidação de alimentos
 - →radiação electromagnética
 - mais eficaz na presença de sensibilizadores (pigmentos, ...)
 - →iões metálicos
 - →hemos dissociados

- →Inibidores da oxidação dos alimentos
 - →agentes quelantes
 - →reduzem concentração de iões metálicos em solução
 - →extintores de radicais livres
 - → formam radicais estáveis e menos reactivos
 - →agentes redutores
 - → dadores de electrões

Composição dos alimentos

- →Antioxidantes naturais
 - →benefícios
 - →acção positiva sobre a saúde
 - **→**limitações
 - →interferência no flavour
 - →necessário avaliar a segurança

→Antioxidantes naturais

- →tocoferóis
 - $\rightarrow \alpha$, β , γ , δ
 - →transferência do hidrogénio fenólico
 - →captura do oxigénio singuleto

Anti-oxidantes

Composição dos alimentos

138

→Antioxidantes naturais

- →ácido ascórbico
 - → dador de hidrogénio
 - →extintor de oxigénio singuleto
 - →remoção de oxigénio molecular

 - →regeneração de radicais tocoferol
 - →pro-oxidante redução de Fe³+ a Fe²+

→Antioxidantes naturais

- →carotenóides
 - →extinção de oxigénio singuleto

Anti-oxidantes

Composição dos alimentos

140

→Antioxidantes naturais

- →quelantes de metais
 - →ácido fosfórico
 - →ácido cítrico
 - →ácido ascórbico
 - **→**EDTA
 - →aminoácidos e péptidos
 - →proteínas (transferina, ovotransferina)
 - →formam complexos ou compostos de coordenação

→Antioxidantes naturais

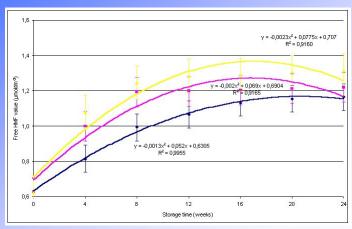
- →flavonóides
 - → produtos secundários do metabolismo das plantas
 - → quelantes de metais
 - → sequestradores do anião superóxido
 - → dadores de hidrogénio
 - →antocianinas, flavanois, flavonois, flavonas, isoflavonas, proantocianidinas

Anti-oxidantes

Composição dos alimentos

142

→Antioxidantes naturais


- →reacção de Maillard (acastanhamento não enzimático)
 - →reacção entre compostos com um grupo carbonilo e aminas
 - → compostos com grupo carbonilo dos alimentos:
 - →aldeídos
 - →cetonas
 - →açúcares redutores
 - →compostos com grupos amina:
 - →aminoácidos, polipeptidos ou proteínas
 - →1º passo é uma reacção de adição entre um açúcar redutor e uma amina primária
 - →produto final é um pigmento castanho melanoidina
 - →passos intermédios mal conhecidos

- →reacção de Maillard varia com:
 - ★temperatura
 - →tempo de reacção
 - →composição do alimento
 - →humidade
 - →pΗ
- →reacções paralelas ou em série produzem diversos produtos de reacção
 - importantes como corantes, componentes do flavour e anti-oxidantes
 - →alguns possuem propriedades adversas
 - → reacção de açúcares com lisina produz proteínas com digestibilidade reduzida
 - →temperaturas de cozedura elevadas produzem aminas heterocíclicas que são fortes mutagéneos

Composição dos alimentos

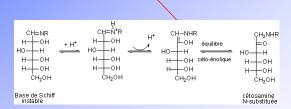
144

→reacção de Maillard também ocorre à temperatura ambiente durante armazenamento prolongado

Changes in the free HMF of UHT sterilised milk stored at different temperatures temp. 4°C

temp. 8°C

temp. 20°C

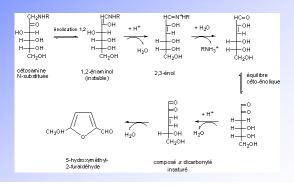

temp. 2

Anti-oxidantes

Composição dos alimentos

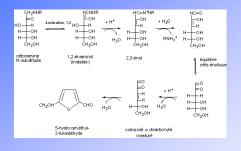
- →química da reacção de Maillard
 - → formação de uma base de Schiff
 - →amina primária reage com um açúcar através de uma adição-eliminação
 - →ataque nucleofílico ao grupo carbonilo seguido por perca de uma molécula de H₂O formando uma imina (base de Schiff)

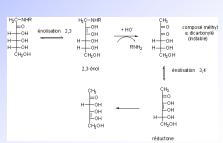
- →química da reacção de Maillard→rearranjo de Amadori
 - →a imina isomeriza para formar um composto de Amadori
 - →equilíbrio ceto-enólico


Anti-oxidantes

Composição dos alimentos

148

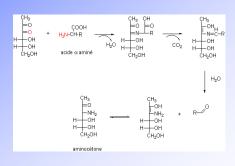

→química da reacção de Maillard

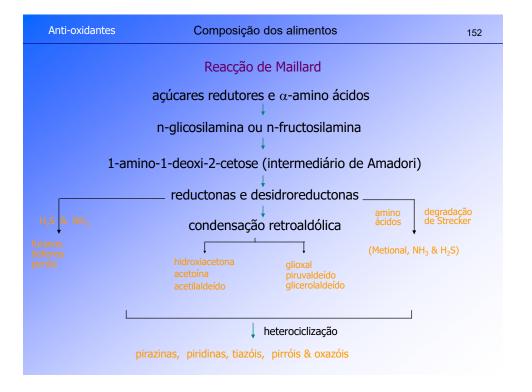

- → formação de deoxiosonas
 - →intermediário de Amadori liberta uma amina e forma uma deoxiosona
 - → processo depende do pH
 - pH < 4, enol 1,2 forma 3-deoxiosona
 - •pH entre 5 e 7, enol 2,3 forma 1-deoxiosona

→química da reacção de Maillard

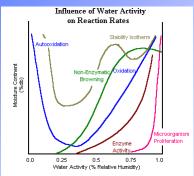
✓ formação de compostos responsáveis pelo flavour
 ✓ deoxiosonas são reactivas e sofrem diversas
 reacções, formando compostos que influem na
 cor e no flavour

Anti-oxidantes


Composição dos alimentos


150

→química da reacção de Maillard


- → degradação dos produtos de Amadori a pH básico
 - →em condições alcalinas, produtos de Amadori fragmentam e formam compostos bicarbonilos de baixo peso molecular
 - →auto-polimerizam para formar melanoidinas

→química da reacção de Maillard
 →degradação de Strecker
 →alguns compostos bicarbonilo combinam com a. a.
 →eliminação de RCHO, formando compostos heterocíclicos simples
 pirazinas, oxazóis, tiozol, pirrol e tiofenos

variáveis que afectam a reacção de Maillard√água

→aumento de pH provoca aumento da extensão da formação de compostos com cor

Anti-oxidantes

Composição dos alimentos

- → produtos resultantes da oxidação de lípidos contribuem para a formação de melanoidinas
- →oxidação não enzimática de lípidos também origina produtos anti-oxidantes
 - ▶reacção de proteínas com produtos de oxidação dos lípidos

- →Determinação da capacidade anti-oxidante total
 - ▶reacção modelo baseada na oxidação in vitro do ácido linoleico ou LDL humana
 - →medição da capacidade de captura de radicais
 - →ensaio do DPPH (2,2'-difenil-1-picrilhidrazina)
 - →ensaio TRAP (total radical-trapping parameter)
 - →ensaio TEAC (Trolox equivalent antioxidant activity)
 - **▶**ensaio ORAC (oxygen radical absorbance capacity)
 - →FRAP (ferric-reducing antioxidant power)
- ▶ ensaio do ácido tiobarbitúrico (TBARS) mede a oxidação de lípidos

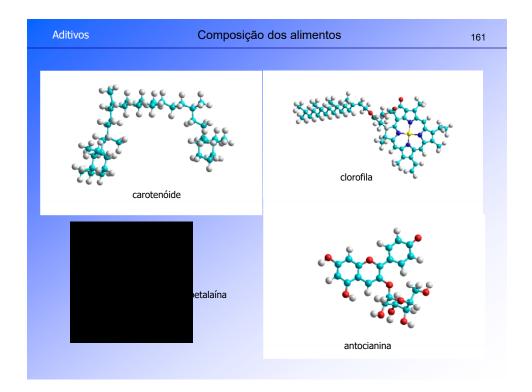
Anti-oxidantes

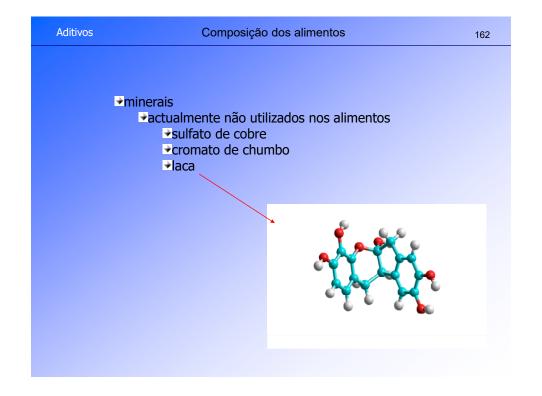
Composição dos alimentos

- →Anti-oxidante ideal
 - →ausência de efeitos fisiológicos prejudiciais
 - →sem influência organoléptica negativa
 - →eficaz a baixas concentrações
 - →solúvel em lípidos
 - →efeito persistente
 - → facilmente disponível
 - →económico
 - →não absorvido pelo corpo

■Aditivos alimentares

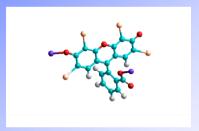
- inicialmente, substâncias adicionadas em pequenas quantidades para assegurar a conservação
- →outros aditivos introduzidos para "melhorar" a aparência e restantes qualidades organolépticas
- →substâncias adicionadas intencionalmente aos alimentos para melhorar as suas características, técnicas de elaboração, conservação e/ou melhorar a sua adaptação ao uso a que se destinam


Aditivos Composição dos alimentos


- →Classificação dos aditivos
 - →modificadores das características organolépticas
 - →corantes
 - →aromatizantes
 - →potenciadores de sabor
 - →edulcorantes artificiais
 - →aditivos que melhoram características físicas
 - →estabilizantes
 - →emulsificantes
 - →espessantes
 - →gelificantes
 - →anti-espumíferos
 - →humectantes
 - →anti-aglutinantes

- →Classificação dos aditivos
 - →evitam alterações químicas e biológicas
 - →conservantes
 - →anti-oxidantes
 - →sinérgicos dos anti-oxidantes
 - →melhoradores ou correctores das propriedades
 - →reguladores de pH
 - **→**gaseificantes

Aditivos Composição dos alimentos


- **→**corantes
 - →substâncias que proporcionam, reforçam ou variam a cor
 - →orgânicos
 - →obtidos a partir de plantas ou animais
 - →clorofila
 - →carotenóides
 - →betalaínas
 - →antocianinas

→sintéticos

- →mais de 3000, dos quais apenas 10 % usados nos alimentos
 - →proporcionam cores persistentes
 - →cores variadas e uniformes
 - →cores de diversas intensidades
 - →elevada pureza e baixo preço
 - →podem obter-se em grandes quantidades

Fluorona ⇒ Food Red 14 (FD&C N. 3)

Aditivos

Composição dos alimentos

- → segundo solubilidade
 - → corantes hidrossolúveis
 - →corantes lipossolúveis
 - →corantes insolúveis

- →tipos de aromas e sabores
 - **→**doce
 - **→**amargo
 - · diffiding
 - **→**ácido
 - →salgado
 - →picante
 - →adstringente
 - →metálico
 - →aroma é devido a substâncias dispersas nos gases
 - →sabor é devido ao contacto de uma solução aquosa de uma determinada substância com os sensores da superfície da língua e regiões adjacentes da boca
 - substâncias insolúveis em água não têm sabor

Aditivos Composição dos alimentos 166 →diferenças de intensidade dos sabores devem-se: →interacção entre as moléculas da água com as do alimento (soluto) → compatibilidade entre as estruturas químicas da água com as do soluto → sensações salgadas e ácidas mais intensas pois são causadas por substâncias mais compatíveis com a água do que as doces ou amargas, alcançando regiões mais profundas do epitélio Compatibili dade decrescente Profundidade crescente do epitélio Sabor

→aromatizantes

- →substâncias que proporcionam cheiro e sabor aos alimentos
 - →naturais
 - **→**limoneno
 - →essência de pinheiro
 - →artificiais
 - → grande poder aromatizante
 - →baratos
 - →mais persistentes
 - →acetaldeído
 - →2-acetil-3-etilpirezina

Aditivos Composição dos alimentos OH OH OH OCH3 Vanilina Natural ou sintética (aroma mais intenso)

- →potenciadores de sabor
 - →ácido glutâmico
 - →glutamato de sódio

Aditivos Composição dos alimentos 170

→edulcorantes artificiais

- →actuam sobre o sabor dos alimentos produzindo uma sensação doce
- →poder edulcorante muito superior ao de qualquer açúcar natural
- →sem valor nutricional
- →reforçam o sabor doce dos alimentos, como complemento dos açúcares ou por si só

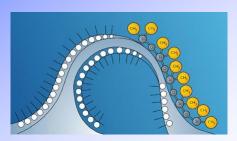
Açúcar	Poder edulcorante relativo
Lactose	16
Maltose	30
Glucose	70
Sacarose	100
Frutose	170
Sacarina	40 000

sacarina

172

→estabilizantes

- →impedem alterações de forma ou natureza química nos alimentos, inibindo reacções ou mantendo o equilíbrio químico
- →podem dividir-se em:
 - →emulsificantes
 - →espessantes
 - →gelificantes
 - →anti-espumíferos
 - →humectantes


Aditivos Composição dos alimentos **→**emulsificantes →mantêm uma dispersão uniforme de 2 ou mais fases não miscíveis →concentram-se na interface reduzindo a tensão superficial →emulsão estável →substâncias tensioactivas (contêm moléculas de ambas as fases) →goma arábica, alginato de cálcio, agar-agar, pectina, celulose, lecitina -O---C----C₁₇H₃₁ -O ---- CH₂CH₂N⁺(CH₃)₃

→espessantes

- →aumentam a viscosidade dos alimentos
 - →combinam-se com a água para aumentar a viscosidade e formar géis
 - →amido, polidextrose, pectina

→anti-espumíferos

- →evitam ou controlam a formação de espuma não desejável
 - Silicone ⇒ evita formação de espuma
 CO₂ ⇒ estabiliza a espuma formada

Aditivos Composição dos alimentos

→ humectantes

→ têm afinidade para a água, estabilizando o teor adequado de humidade

→ sorbitol, celulose e derivados, ortofosfatos

→ anti-aglutinantes

→ impedem a aglutinação, floculação, coagulação ou peptização

→ carbonato de cálcio, silicato de cálcio

→conservantes

- →substâncias que se adicionam aos alimentos para os proteger de alterações biológicas como fermentações, putrefacção e emboloramento

 - →características a respeitar:
 - não tóxicos nem prejudiciais nas doses permitidas
 - ▼não alteráveis no metabolismo humano para um produto tóxico
 - →não pode ser utilizado para mascarar ingredientes ou alimentos em mau estado, nem processos de fabrico fraudulentos
 - →fácil identificação analítica

Aditivos

Composição dos alimentos

178

→anti-oxidantes

- ▼substâncias que impedem ou retardam as oxidações catalíticas e rancidez natural ou provocada pela acção do ar, luz, metais e temperaturas elevadas
- devem ser lipossolúveis e não comunicar cheiro nem sabor ao alimento
 - →produtos que apenas têm acção anti-oxidante
 →BHA, BHT
 - ▶produtos com outras acções, além da anti-oxidante
 ▶SO₂, Na₂SO₃, NaHSO₃

→ capacidade inibidora da oxidação mede-se pelo factor de protecção

FP = $\frac{\text{Índice de próxidos na gordura não tratada}}{\text{Índice de peróxidos na gordura tratada}}$

- →FP>1 anti-oxidante
- →FP<1 pro-oxidante

Aditivos Composição dos alimentos 180

- →anti-oxidantes naturais
 - →pó de cacau
 - →mostarda, pimenta, outras especiarias
 - →óleos de oleaginosas
 - →tocoferóis

→anti-oxidantes sintéticos

- →ácido ascórbico e derivados
 - →efeito fraco, requer sinérgico
 - → rapidamente degradado

→galatos

- →efeito forte
- →sabor um pouco amargo
- →sinérgicos (ácido cítrico) potenciam

→SO₂

→ reage com O₂ do ar formando H₂SO₄

→BHA

- →muito eficaz
- →solúvel em lípidos
- →sem cor nem sabor

→BHT

- →solúvel em lípidos
- →menor poder anti-oxidante
- →alguma toxicidade

Aditivos Composição dos alimentos 182

→sinérgicos de anti-oxidantes

- →substâncias que, sem ser anti-oxidantes, reforçam a acção destes
 - →ácido láctico

 - →ácido cítrico
 - →ortofosfato de sódio
 - →potencia a acção dos sulfitos

→reguladores de pH

- →ácidos, bases e sais usados para controlar o pH dos
 - alimentos
 - →orgânicos
 - → lactato de cálcio
 - → citrato de sódio
 - **→**inorgânicos
 - → carbonato de sódio
 - →sulfato de cálcio

Aditivos

Composição dos alimentos

184

→ gaseificantes

- →substitutos da levedura, para produção de CO₂
 - **→**CO₂
 - →bicarbonato de sódio
 - →sulfato de cálcio
 - →sulfato de sódio
 - →fosfato de amónio
- →outros aditivos
 - →empregues em acções específicas
 - →desenformadores
 - →plastificantes
 - *****...

■Compostos tóxicos naturais

- →alguns metabolitos secundários das plantas são tóxicos
 - →solanina das batatas
 - →compostos produtores de cianeto no feijão-de-lima
 - →safrolo em especiarias
 - →ácido prússico em amêndoas
 - →ácido oxálico em espinafres e rubarbo
 - →inibidores enzimáticos e hemaglutininas em soja
- →tiramina no queijo
- →avidina na clara de ovo
 - →antagonista da biotina
- →tiaminase no peixe
 - →destrói vitamina B₁
- →ácido domoico no pescado
 - →perca de memória

Comp. tóxicos naturais

Composição dos alimentos

- →solo e água contêm metais perigosos
 - →Pb, Hg, Cd, As, Zn, Se
- →toxinas produzidas por microrganismos
 - →aflatoxinas
 - →tricotecenos
 - →ocratoxinas
 - → fumonisinas
 - →zearalenona

- **→** Clostridium perfringens
 - →carne contaminada por conteúdo intestinal durante o abate
 - → diversas toxinas
- → C. botulinum
 - →toxina do botulismo
- → Bacillus cereus
 - →cereulide
- → Staphylococcus aureus
 - →enterotoxinas, entre outras
- → Escherichia coli
 - → O157:H7

Comp. tóxicos naturais

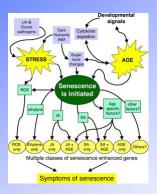
Composição dos alimentos

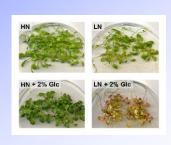
- → produtos formados durante a preparação dos alimentos
 - →nitrosaminas
 - **→PAHs**
 - →aminas heterocíclicas
- → maioria destes compostos tóxicos são removidos ou inactivados quando os alimentos são processados

■Substâncias provenientes da contaminação ambiente

- →alimentos contaminados devido ao modo como são cultivados, criados, processados, armazenados ou preparados
 - → geralmente existentes em concentrações muito baixas e sem risco sério
 - →Ph
 - →bifenilos policlorados (PCBs)
 - produtos de pirólise resultantes da preparação culinária

Composição dos alimentos


190


■Compostos originados durante o processamento

- →perca de qualidade em alimentos frescos
 - → deterioração química
 - → deterioração biológica
- ▼deterioração resulta parcialmente da perca de regulação metabólica e homeostase*
 - →alterações relativamente rápidas para alimentos de origem animal
 - ▶ alimentos de origem vegetal deterioram-se mais lentamente
 - ▼alteração biológica também ocorre devido à senescência dos tecidos

→ senescência

- →diversas alterações irreversíveis das células
 - →em geral, termina na morte celular
 - →segue-se ao crescimento e maturação

Comp. orig. durante process.

Composição dos alimentos

- → frutos podem crescer segundo uma sigmoidal (maçãs) ou uma dupla sigmoidal (peras)
 - → fase de arranque, crescimento, divisão celular, expansão
- → crescimento seguido de maturação e senescência
 → produtor de alimentos tenta impedir maturação
- produtor de alimentos tenta impedir maturação prematura

→ frutos climatéricos

- →aumento no consumo de O₂ e na produção de etileno no início da maturação
 - →aplicação externa de etileno diminui o tempo até ao início da maturação
 - →aumento no consumo de O₂ é permanente ou irreversível
- → frutos não climatéricos
 - - →adição externa de etileno provoca um aumento imediato no consumo de O₂
 - ▼efeito é transiente; pára se etileno for removido

Comp. orig. durante process. Composição dos alimentos

☐ frutos climatéricos
☐ maçãs, bananas, figos, meloa, pêra, manga, tomate
☐ frutos não climatéricos
☐ mirtilo, uva, limão, lima, toranja, laranja, azeitona, ananás, morango

climatéricos

não climatéricos

- →amadurecimento provoca alterações na ultra-estrutura, cor, textura e flavour dos frutos
- ▼voláteis dos frutos são ésteres de baixo peso molecular formados a partir de álcoois C5 e ácido butanóico
 - →maioria são aldeídos e cetonas formadas como produtos secundários de degradação de hidroperóxidos
 - hidroperóxidos provenientes da oxidação dos lípidos

Comp. orig. durante process.

Composição dos alimentos

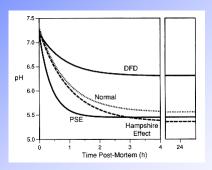
- qualidade dos alimentos cárneos e pescado determinada por factores que afectam o pH dos tecidos
 - → transporte antes do abate

 - → temperatura de armazenamento da carcaça
 - →estímulos eléctricos
- ▼conversão de músculo em carne determinada pela velocidade do metabolismo do glicogénio, o qual produz ácido láctico após o abate

→ fases da conversão de músculo em carne

Fase pré-rigor	ATP dos músculos elevado
Fase do rigor	Exaustão de ATP Textura rígida
Fase pós-rigor	Amaciamento devido à acção de proteases

Comp. orig. durante process.

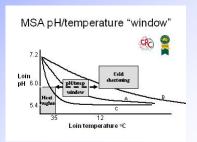

Composição dos alimentos

198

→conversão de músculo em carne

- Circulação de sangue interrompida logo após o abate
 Important para no para os tecidos
 - 1-imediatamente após a morte, níveis intracelulares de ATP permanecem elevados
 - → relaxação muscular e textura macia
 - 2-exaustão de ATP
 - →músculo entra em contracção (rigor mortis)
 - 3-proteases activadas a pH baixo
 - →perca de textura do músculo

→qualidade da carne depende principalmente do pH deve baixar de 7.3 para 5.3 em 24 h


Comp. orig. durante process.

Composição dos alimentos

- →qualidade da carne também depende da temperatura →armazenamento entre 1-5 °C
 - →aumento indesejável da rigidez

 - →evitado por armazenamento a 15 °C ou estímulos eléctricos

- →maturação da carne conduz a um endurecimento
 →resultado do aumento no tamanho e quantidade de fibra muscular
 - →perca de elasticidade devido a aumento de ligações cruzadas no colagénio

